SMART BUILDING FACILITIES

PREVENTION IS BETTER CURE

the second second second

智能設施:預防勝於治療

A VERY WARM WELCOME & INTRODUCTION

MATTHEW LAM – CEO, OPTICAL SENSING LIMITED

EDUCATION & PROFESSIONAL AFFILIATION

- Bachelor degree in Electronic Engineering [New Zealand]
- Master degree in Electronic Engineering [New Zealand]
- Diploma in Management
- Registered Professional Engineer [Hong Kong]
- Chartered Engineer [UK]
- Corporate Member, Institution of Engineering & Technology
- Chartered Member, Institution of Engineering New Zealand

PREVIOUS RESPONSIBILITIES

- CEO Hutchison Telecom Vietnam
- CEO Hutchison Telecom Malaysia
- COO Hutchison Telecom Sri Lanka
- CTO Wharf T&T [HONG KONG]

WE RESEARCH, DESIGN & IMPLEMENT

FIBRE OPTIC SENSING SYSTEMS + DATA ANALYTICS TO REALISE PREVENTIVE MONITORING

INTELLIGENT BUILDINGS

What is an Intelligent Building

A building that "provides a productive and costeffective environment through optimization of its four basic elements including

- Structure
- Systems
- Services
- Management

and the interrelationships between them"

By Intelligent Building Institute (IBI)

Characteristics of an Intelligent Building

- Accomplish intelligent behaviour through self diagnosis, condition/ event based actions and learning
- Supports automation in O&M and administration
- With strong cyber security measures
- Supports introduction of new services
- Integrated System / HMI

Extracted from Jean-Christope HUTT, "Energy Efficiency and Intelligent Buildings"

FAILURE OF BUILDING FACILITIES CAN CAUSE DEVASTATING CONSEQUENCES

PREVENTIVE MONITORING TO AVOID FAILURE IS IMPERATIVE IN FACILITIES MANAGEMENT

FIBRE OPTIC SENSING SYSTEM

FIBRE OPTIC SENSING IS BEST FOR FACILITIES

WHY FIBRE OPTIC SENSORS

APPLICATION

POWER DISTRIBUTION NETWORK

ELECTRICITY

Power Distribution Network

THE KEY ELEMENTS

THERMAL NUMERICAL MODEL OF POWER NETWORK

IEC61439 & IEC60439 – TABLE 2 defines "Temperature-rise limits" in Kelvin

TEMPERATURE-RISE = PART TEMPERATURE - AMBIENT TEMPERATURE

 $\delta T = T_{part} - T_{ambient}$

APPLICABLE FOR T_{ambient} NOT EXCEEDING 35°C

PARTS	δτ limits
TERMINALS FOR EXTERNAL INSULATED CONDUCTORS	70К
ACCESSIBLE EXTERNAL ENCLOSURES - METAL SURFACES - INSULATING SUFACES	ЗОК 40К
MANUAL OPERATING MEANS - OF METAL - OF INSULATING MATERIAL	15K 25K

"... a maximum temperature rise of 105K for bare copper busbars conductors shall not be exceeded.... The 105K relates to annealing of copper likely to occur"

PREVENTIVE MONITORING – SWITCHBOARD

MONITORING OF BUS DUCTS – EARLY DETECTION OF POTENTIAL FAULTS / HOTSPOTS

ATTACHMENT OF FIBRE CABLE SENSING CABLES

IPBM BUS DUCT FOR DATA CENTRES

SIEMENS BUS DUCTS

HOW THERMAL PATTERN ANALYSIS PREVENTED BUS DUCT FAILURES

PREVENTIVE MAINTENANCE MEASURES

The customer had arranged maintenance work to replace / repair the concerned bus ducts

A potentially serious power outage due to bus duct failure is prevented

APPLICATION - PIPE LEAK DETECTION

WATER PIPE LEAK DETECTION

WATER

Water Supply System Drainage System

FIBRE OPTIC DISTRIBUTED ACOUSTIC SENSING SYSTEM

RECOGNISE THE "NOISE SIGNATURE" AT THE LEAK POINT

Bernoulli's Equation

 $\mathsf{P}_2 \, = \mathsf{P}_1 \, + \, (1/2) \, [\, \rho \, (\mathsf{V}_1 \,)^2 \, - \, (\mathsf{V}_2 \,)^2 \,]$

where

$$\begin{split} P_1 &= \text{Pressure inside the pipe} \\ V_1 &= \text{Velocity inside the pipe} \\ h_1 &= \text{Height of centre of mass of water inside the pipe} \\ A_1 &= \text{Effective area inside the pipe} \end{split}$$

 $\begin{array}{l} \mathsf{P}_2 = \mathsf{Pressure inside the pipe} \\ \mathsf{V}_2 = \mathsf{Velocity inside the pipe} \\ \mathsf{h}_2 = \mathsf{Height of centre of mass of water inside the pipe} \\ \mathsf{A}_2 = \mathsf{Effective area inside the pipe} \end{array}$

ρ = Density of water

The Site

OPTICAL SENSING

WATER PIPE LEAK DETECTION – LEAK "NOISE SIGNATURE"

Water blasting to simulate a pipe leak

FULL SPECTRUM OF APPLICATION AREAS

WE HAVE PRESENTED ONLY 2 APPLICATION AREAS HERE. FOR MORE DETAILS, PLEASE CONTACT: <u>Email: matthew@opticalsensing-hk.com</u> mobile / whatsapp: 91991206 www.opticalsensing-hk.com